Math 9

7.5 - Rotational Symmetry

Name: \qquad
Date: \qquad

Shapes can be rotated \qquad or \qquad .

A shape has ROTATIONAL SYMMETRY if it matches up with itself after a rotation of less than 360°.
The NUMBER of times a shape matches up with itself during ONE ROTATION is called the ORDER OF ROTATION.
The ANGLE OF ROTATIONAL SYMMETRY $=\frac{360^{\circ}}{\text { Order of Rotation }}$

The Cross matches up with itself \qquad times during one complete turn (a rotation of \qquad ${ }^{\circ}$).

The angle of rotational symmetry =

Ex. 1: Determine the Order of Rotation and the Angle of Rotational Symmetry for each of the shapes below.

Ex. 2: Rotate the shapes through the angles and directions given below.
90° Clockwise about point D.
C

90° Counter-clockwise about point J.

Ex. 3: Rotate Rectangle $A B C D$ as described below:
a. 90° Clockwise about vertex A.
b. 180° Clockwise about vertex A.
c. 270° Clockwise about vertex A.

What is the Rotational Symmetry of the resulting shape?
180° Counter-clockwise about point C.

180° Clockwise about point \boldsymbol{H}.

10

8

6

4

2

0

