Math 9

Name: \qquad

6.4 - Solving Linear Inequalities

Date:

\qquad

Review: Which of the following is a solution to: $x \leq-3 \frac{1}{3} ? \quad-3 \quad 2 \quad 0 \quad-3 \frac{1}{3}$

$$
\text { Graph: } c<7 \longleftrightarrow \quad m \geq-2
$$

Adding/Subtracting to an Inequality

Add the same number to both sides of each inequality and see if the inequality remains true:

$$
\begin{array}{llll}
7>2 & -5<0 & -10 \geq-15 & 15 \leq 30
\end{array}
$$

Subtract the same number from both sides of each inequality and see if the inequality remains true:
$7>2$
$-5<0$
$-10 \geq-15$
$15 \leq 30$

Conclusion: When we add/subtract the same number on both sides, the inequality

Multiplying/Dividing Inequalities

Multiply and divide each inequality by a POSITIVE value and see if the inequality remains true:

$$
7>2 \quad-5<5 \quad-10 \geq-15 \quad 15 \leq 30
$$

\qquad .

Multiply and divide each inequality by a NEGATIVE value and see if the inequality remains true:
$7>2$
$-5<5$
$-10 \geq-15$
$15 \leq 30$

When we multiply or divide an inequality by a NEGATIVE value, the inequality \qquad .

Solving Inequalities

When solving inequalities we use the same rules that we used for solving equations...
EXCEPT.... If we have to multiply/divide by a negative number, we must reverse the inequality symbol.
Solve: $2 x+4=10$
Solve: $2 x+4<10$

Solve: $-2 x+4=10$
Solve: $-2 x+4 \geq 10$

Solve the following inequalities and graph the solutions:
$4.2+2 x<x-6.5$

$$
y-5<8
$$

$$
-\frac{1}{5} b+3>2
$$

$15+3 w \leq 7+w$
$-\frac{3}{x} \geq 10$
$12-\frac{1}{m} 10<5$

