Math 9	Name:
6.4 – Solving Linear Inequalities	Date:
Review: Which of the following is a solution to: $x \le -3\frac{1}{3}$? -3	2 0 $-3\frac{1}{3}$
Graph: $c < 7$ \leftarrow	$m \ge -2$ \longleftarrow

Adding/Subtracting to an Inequality

Add the same number to both sides of each inequality and see if the inequality remains true:

7 > 2 -5 < 0 $-10 \ge -15$ $15 \le 30$

<u>Subtract</u> the same number from both sides of each inequality and see if the inequality remains true:

Conclusion: When we add/subtract the same number on both sides, the inequality _____

.

_.

Multiplying/Dividing Inequalities

Multiply and divide each inequality by a **POSITIVE** value and see if the inequality remains true:

7 > 2 -5 < 5 $-10 \ge -15$ $15 \le 30$

When we multiply or divide an inequality by a **POSITIVE** value, the inequality ______

Multiply and divide each inequality by a **NEGATIVE** value and see if the inequality remains true:

7 > 2 -5 < 5 $-10 \ge -15$ $15 \le 30$

When we multiply or divide an inequality by a **NEGATIVE** value, the inequality ______.

Solving Inequalities

When solving inequalities we use the same rules that we used for solving equations...

EXCEPT.... If we have to *multiply/divide* by a *negative* number, we must *reverse* the inequality symbol.

Solve: 2x + 4 = 10 Solve: 2x + 4 < 10

Solve: -2x + 4 = 10

Solve: $-2x+4 \ge 10$

Solve the following inequalities and graph the solutions:

4.2 + 2x < x - 6.5 y - 5 < 8

-5x - 8 < 2.5

 $15 + 3w \le 7 + w$

 $-\frac{3}{x} \ge 10$

 $12 - \frac{1}{m} 10 < 5$