Math 9

5.5 - Multiplying Polynomials

The expression $4(3 x)$ is a PRODUCT statement. It can be represented in the following ways:

Algebraically

$$
4(3 x)=
$$

Algebra Tiles Model

$$
3 x=\quad \rightarrow 4(3 x)=
$$

Rectangle Area Model

$4(3 x)$ can also be interpreted as the AREA of the rectangle:

The expression $4(3 x+2)$ is also a PRODUCT statement. It can be represented in the following ways:

Algebraically

$$
4(3 x+2)=
$$

Algebra Tiles Model

$$
3 x+2=\quad \rightarrow 4(3 x+2)=
$$

Rectangle Area Model

$$
4(3 x+2) \text { can also be interpreted as the AREA of the rectangle: }
$$

Determine the product: $-4(3 x)$

Algebra Tiles:

Algebraically:

Determine the following products:
$3(-2 m+4)$

$$
-2\left(-n^{2}+2 n-1\right)
$$

Determine which of the following products is modelled by the algebra tiles.
$2\left(8 x^{2}+8 x-8\right)$

$$
2\left(4 x^{2}+4 x+4\right)
$$

$2\left(4 x^{2}+4 x-4\right)$

$$
-2\left(-4 x^{2}-4 x+8\right)
$$

The expression $(2 x)(4 x+1)$ is the product of a monomial and a binomial. It can be interpreted:

Algebraically

$$
(2 x)(4 x)=
$$

Algebra Tiles Model

Rectangle Area Model

Determine the following products using Algebra Tiles, Rectangle Area model and algebraically:
$2 x(3 x+4)$

$$
-4 c(2 c-3)
$$

$-2 x(-3 x+4)$

Determine the product represented by the following Algebra Tiles model:

