Name: \qquad

Unit 5 - Trigonometry

5.3 - The Basic Trigonometric Ratios

Review

1. Find the length of the missing sides on the triangles $A B C$ and $P Q R$:

2. Find the values of the following: a. $\operatorname{Sin}\left(47^{\circ}\right)=$
b. $\operatorname{Cos}^{-1}\left(\frac{5}{12}\right)=$
3. Label the sides of the following triangles as Hyp, Opp, and Adj based on the given angles.

4. For the triangle given below, find the values of: $\frac{O p p}{H y p}, \frac{A d j}{H y p}, \frac{O p p}{A d j}$:

The 3 Basic Trigonometric Ratios

- For a Right Triangle, the values of $\frac{O p p}{H y p}, \frac{A d j}{H y p}, \frac{O p p}{A d j}$ can also be written in terms of Sine, Cosine and Tan.
- The angle used in the Sine, Cosine and Tan functions is the same angle used for naming the 3 sides.

$$
\begin{array}{lllll}
\operatorname{Sin}(\theta)=\frac{\text { Length of Opposite }}{\text { Length of Hypotenuse }} & \text { or } & \operatorname{Sin}(\theta)=\frac{O}{H} & \text { or } & S O H \\
\operatorname{Cos}(\theta)=\frac{\text { Length of Adjacent }}{\text { Length of Hypotenuse }} & \text { or } & \operatorname{Cos}(\theta)=\frac{A}{H} & \text { or } & C A H \\
\text { Tan }(\theta)=\frac{\text { Length of Opposite }}{\text { Length of Adjacent }} & \text { or } & \operatorname{Tan}(\theta)=\frac{O}{A} & \text { or } & \text { TOA }
\end{array}
$$

Just remember: SOH CAH TOA

Examples

For each of the following triangles, find the values of $\operatorname{Sin}(A), \operatorname{Cos}(A), \operatorname{Tan}(A)$:

