Name: \qquad

Unit 5 - Trigonometry

5.1 - The Pythagoras Theorem

Review of Squares and Square Roots

Find the SQUARES of the following values given in the table:

Original Value	3	7	12	2.6	11.8	46.53
Squared						

Find the SQUARE ROOTS of the following values in the table:

Original Value	9	25	144	12	40	348.56
Square Root						

For each of the following pairs of values find the SUM OF THE SQUARES:
a. 3, 4
b. 9,16
c. $29.44,65.2$

For each of the following pairs of values find the DIFFERENCE OF THE SQUARES:
d. 5, 3
e. 12,8
f. $35.2,12.33$

Find the SQUARE ROOT of the SUM of the SQUARES of:
a. 3 and 4
b. 9 and 16
c. 2.4 and 11.6

Find the SQUARE ROOT of the DIFFERENCE of the SQUARES of:
a. 13 and 12
b. 5 and 3
c. 16 and 8

The Pythagoras Theorem

- A right triangle is any triangle that contains a right angle i.e. 90°
- The side opposite the right angle is called the hypotenuse.
- The other two sides are called legs.

The hypotenuse is always the LONGEST leg in a triangle.

- the Pythagoras Theorem states that the sum of the squares of the lengths of the two legs is equal to the square of the length of the hypotenuse:

$$
(\text { hypotenuse })^{2}=\left(\operatorname{leg}_{1}\right)^{2}+\left(\operatorname{leg}_{2}\right)^{2} \quad\left(\operatorname{leg}_{2}\right)^{2}=(\text { hypotenuse })^{2}-\left(\operatorname{leg}_{1}\right)^{2}
$$

Examples: Write the Pythagoras Theorem for the following triangles.
a)

b)

c)

We can use the Pythagoras Theorem to find the lengths of unknown sides of any right triangle.
Examples: Find the lengths of the unknown sides.
a)

Pythagorean Triples

Pythagorean triples are whole number groups of numbers that satisfy the Pythagoras Theorem
e.g. 3,4,5

5,12,13
8,15,17
7,24,25
9,40,41
20,21,29

Examples: Determine if it is possible to have a right triangle with the following side lengths.
(HINT: Check if the side lengths satisfy the Pythagoras Theorem.)
a) $24,45,51$
b) $18,24,28$

Assignment

1. Write the Pythagoras Theorem for each right triangle.
a)

b)

c)

d)

\qquad
2. Will the following lengths form a right triangle? (HINT: Use the Pythagoras Theorem and check to see if the left side of the equation equals the right side of the equation.)
a) 1, 2, 3
b) $12,15,9$
c) $12,13,5$
d) $14,7,9$
3. Find the length of the unknown side. Leave your answers to the nearest tenth if necessary.
a)

b)

c)

d)

4. A ladder that is 8 metres long is leaning against a wall. The base of the ladder is 2.1 metres from the wall. How high on the wall does the ladder reach? (HINT: Draw a sketch first.)
5. Ray hikes 7 km north and 4 km east. How far is he from his starting point? (HINT: Draw a sketch first.)
6. A 15 metre flag pole is supported by a 20 metre guy wire as shown below. How far from the pole is the wire attached to the ground? (HINT: Label the diagram below with the information given.)

