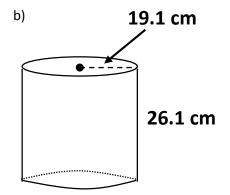
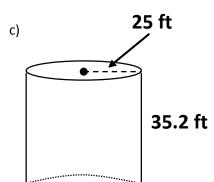
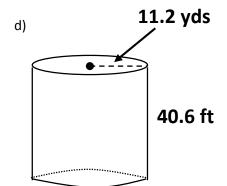
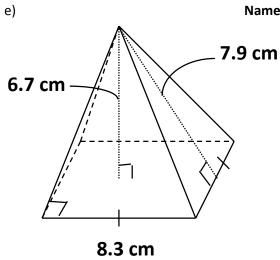

Unit 2 - Measurement 2.8 - Surface Area


- a POLYGON is a closed figure formed by three or more line segments (it is 2-dimensional)
 e.g. triangles, squares, rectangles, etc.
- a POLYHEDRON is a 3-dimensional figure with polygons as faces
 e.g. prisms and pyramids
- the **SURFACE AREA** of an object is the **TOTAL** area of all the **SURFACES** of the 3D object.
- surface area is measured in units² e.g. cm², ft², m², in², etc.
- a **NET** is a pattern for a polyhedron obtained by cutting the polyhedron along some of its edges and it laying it flat. In other words, it is a 2-dimensional representation of a 3-dimensional object
- use the following formulae sheet to calculate the surface area of any regular object

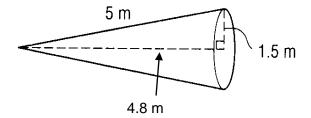
Geometric Figure	Surface Area
Cylinder	$A_{top} = \pi r^2$ $A_{base} = \pi r^2$ $A_{side} = 2\pi rh$ $SA = 2\pi r^2 + 2\pi rh$
Sphere	$SA = 4\pi r^2$ or $SA = \pi d^2$
Cone	$A_{side} = \pi rs$ $A_{base} = \pi r^2$ $SA = \pi r^2 + \pi rs$
Square-Based Pyramid	$A_{triangle} = \frac{1}{2}bs$ (for each triangle) $A_{base} = b^2$ $SA = 2bs + b^2$
Rectangular Prism	SA = wh + wh + bw + bw + lh + lh or SA = 2(wh + bw + lh)
General Right Prism	SA = the sum of the areas of all the faces
General Pyramid	SA = the sum of the areas of all the faces


Note: Use the value of π programmed in your calculator rather than the approximation of 3.14. **EXAMPLES:** Draw a **NET** and calculate the **SURFACE AREA** for each of the figures shown below.

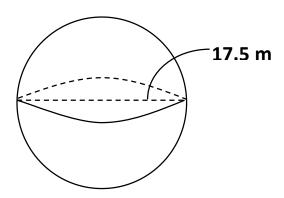

Name of Polyhedron:


Name of Polyhedron: _____

Name of Polyhedron: _____



Name of Polyhedron: _____



Name of Polyhedron:

e)

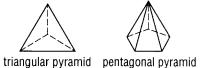
Name of Polyhedron:

Assignment

PART 1 – Three-Dimensional Solids

There are many different three-dimensional shapes in a set of geometric solids.

triangular prism



A **polyhedron** is a three-dimensional figure with faces that are polygons.

Use the solids shown at the top of the page to list the following.

- 1. all the solids with at least one rectangular or square face
- 2. all the solids with no triangular faces
- 3. all the solids with at least one circular face
- 4. all the solids with more than 5 flat faces

Name the geometric solid suggested by each object.

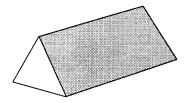
5.

7.

8.

9.

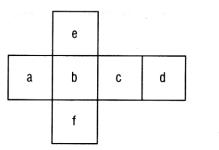
10.

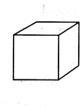


Sketch a three-dimensional figure for each description. Name each figure.

- 11. 6 rectangular faces
- 12. 5 triangular faces, 1 pentagonal face

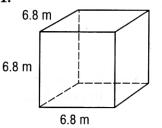
13. 2 triangular faces, 14. 4 triangular faces 3 rectangular faces

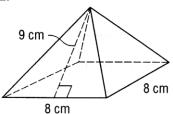

- 15. a) Describe how a prism and a pyramid are different.
- **b)** Describe how they are alike.
- 16. Show on the diagram how four identical triangular prisms can be used to form another triangular prism.



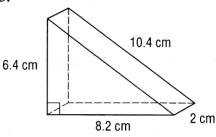
PART 2 - Surface Areas of Polyhedra

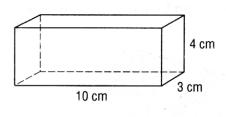
The surface area of a figure is the sum of the areas of all its faces.


surface area = areas of a + b + c + d + e + f

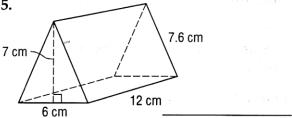


Draw the net. Then, estimate and calculate the surface area of each polyhedron.

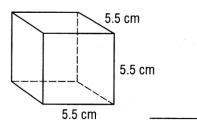

1.


2.

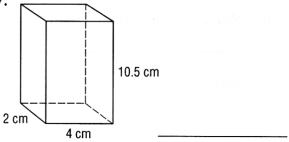
3.

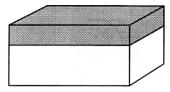


4.



Calculate the surface area.


5.


6.

7.

- 8. A box of facial tissues is 22 cm by 10.5 cm by 8 cm. How much cardboard is on the outside surface?
- 9. A storage box is 60 cm long, 45 cm wide, and 30 cm high. The lid is 10 cm high. What is the surface area of the box and its lid?

