Name: \qquad

Unit 2 - Measurement

2.8 - Surface Area

- a POLYGON is a closed figure formed by three or more line segments (it is 2-dimensional)
e.g. triangles, squares, rectangles, etc.
- a POLYHEDRON is a 3-dimensional figure with polygons as faces
e.g. prisms and pyramids
- the SURFACE AREA of an object is the TOTAL area of all the SURFACES of the 3D object.
- surface area is measured in units ${ }^{2}$ e.g. $\mathrm{cm}^{2}, \mathrm{ft}^{2}, \mathrm{~m}^{2}$, in^{2}, etc.
- a NET is a pattern for a polyhedron obtained by cutting the polyhedron along some of its edges and it laying it flat. In other words, it is a 2-dimensional representation of a 3-dimensional object
- use the following formulae sheet to calculate the surface area of any regular object

Geometric Figure	Surface Area
Cylinder	$\begin{aligned} & A_{\text {sap }}=\pi r^{2} \\ & A_{\text {base }}=\pi r^{2} \\ & A_{\text {sade }}=2 \pi r h \\ & S A=2 \pi r^{2}+2 \pi r h \end{aligned}$
Sphere	$S A=4 \pi r^{2}$ or $S A=\pi d^{2}$
Cone	$\begin{aligned} & A_{\text {siare }}=\pi r s \\ & A_{\text {buse }}=\pi r^{2} \\ & S A=\pi r^{2}+\pi r s \end{aligned}$
Square-Based Pyramid	$\begin{aligned} & A_{\text {triagegle }}=\frac{1}{2} b s \text { (for each triangle) } \\ & A_{\text {trase }}=b^{2} \\ & S A=2 b s+b^{2} \end{aligned}$
Rectangular Prism	$S A=w h+w h+h w+h w+l h+l h$ or $S A=2(w h+h w+l h)$
General Right Prism	$S A=$ the sum of the areas of all the faces
General Pyramid	$S A=$ the sum of the areas of all the faces

Note: Use the value of π programmed in your calculator rather than the approximation of 3.14 .

EXAMPLES: Draw a NET and calculate the SURFACE AREA for each of the figures shown below.

3.1 cm

Name of Polyhedron: \qquad

Name of Polyhedron: \qquad
c)

\qquad

Name of Polyhedron: \qquad
e)

Name of Polyhedron: \qquad

\qquad

4.8 m
e)

Name of Polyhedron:

Assignment

PART 1 - Three-Dimensional Solids

There are many different three-dimensional shapes in a set of geometric solids.

triangular prism

triangular pyramid

rectangular prism

pentagonal pyramid

square pyramid

sphere

hexagonal prism pentagonal prism

cone

A polyhedron is a three-dimensional figure with faces that are polygons.

Use the solids shown at the top of the pağe to list the following.

1. all the solids with at least one rectangular or square face
2. all the solids with no triangular faces
3. all the solids with at least one circular face
4. all the solids with more than 5 flat faces

Name the geometric solid suggested by each object.

Sketch a three-dimensional figure for each description. Name each figure.
11. 6 rectangular faces
12. 5 triangular faces, 1 pentagonal face
13. 2 triangular faces,
14. 4 triangular faces 3 rectangular faces
15. a) Describe how a prism and a pyramid are different.
b) Describe how they are alike.
16. Show on the diagram how four identical triangular prisms can be used to form another triangular prism.

The surface area of a figure is the sum of the areas of all its faces.
surface area $=$ areas of $a+b+c+d+e+f$

Draw the net. Then, estimate and calculate the surface area of each polyhedron.
1.

2.

3.

4.

9. A storage box is 60 cm long, 45 cm wide, and 30 cm high. The lid is 10 cm high. What is the surface area of the box and its lid?

