February-18-14 1:44 PM

Math 9

Name: LEY

2.4 - Exponent Laws I

Exponent Laws are rules that we use when we are combining and simplifying powers.

Investigate

Product	Each Power Expanded	Re-write as a Single Power	
3 ³ × 3 ⁴	(3 × 3 × 3) × (3 × 3× 3× 3)	3	3+4=7
5 ⁴ × 5 ²	(5 x 5 x 5 x 5) x (5 x 5)	56	4+2=6
$(-2)^3 \times (-2)^2$	(-2).(-2).(-2).(-2)	(-2) ⁵	3+2 =5
10 ³ × 10 ⁰	$(10 \times 10 \times 10) \cdot 1$ $[10^\circ = 1]$	10	3+0=3

BASE and ADD the powers.

$$b^{x} \times b^{y} = b$$
Same base

Example 1: Write each expression as a single power:

a)
$$4^{5} \times 4^{7}$$

base = 4 fower = 5+7
 $5+7$ 12
 4 = 4

b)
$$3^9 \times 3^9 \times 3$$

Example 2: Evaluate:

a)
$$5^2 \times 5^6$$
 $5^2 = 5^6 = 390625$

a)
$$5^{2} \times 5^{6}$$
 b) $(-3)^{4} \times (-3)^{2}$ c) $(-2)^{5} \times (-2)^{4}$
 $5^{2+6} = 5^{8} = 39062^{5}$ $(-3)^{2} = 729$ $(-2)^{9} = -512$

+ve because

there are

there are

 $6^{-1} = 5^{1} =$

c)
$$(-2)^5 \times (-2)^4$$

 $(-2)^9 = -512$
-ve because
there are
 q -ve signs
 (odd)

Extension: Evaluate:
$$2 \times 3$$
 Bases are nor same!!
$$= 8 \times 9 = 72_{11}$$

Investigate

Quotient	Each Power Expanded	Re-write as a Single Power	
$3^5 \div 3^4 = \frac{3^5}{3^4}$	3 x 3 x 3 x 3 x 3 3 x 3 x 3 x 3	31	5-4=
$5^7 \div 5^4 = \frac{5^7}{5^4}$	8 x 8 x 8 x 8 x 5 x 5 x 5	5-3	7-4=3
$(-2)^6 \div (-2)^3 = \frac{(-2)^6}{(-2)^3}$	(x)(-2)(-2)(-2)(-2) (x)(-2)(-2)	(-2)	6-3=3
$10^3 \div 10^0 = \frac{10^3}{10^0}$	10 × 10 × 10	10	3-0=3

Conclusion: When we DIVIDE powers that have the same

$$b^x \div b^y = \frac{b^x}{b^y} = b^x - y$$

BASE and SUBTRALT the powers. $b^{x} \div b^{y} = \frac{b^{x}}{b^{y}} = b$ Numerator Power

Denominator Power

Example 3: Write each expression as a single power, then evaluate:

a)
$$8^7 \div 8^3$$

7-3 4
8 = 8

b)
$$3^{12} \div 3^{8}$$

 $12 - 8 + 4$
 $3 = 3$

c)
$$(-5)^{10} \div (-5)^{6}$$

 $(-5)^{10} = (-5)$

Example 4: Evaluate using exponent laws and correct order of operations:

a)
$$3^{3} + 3^{2} \times 3^{4}$$

$$= 3 + 3$$

$$= 27 + 729$$

$$= 756$$

b)
$$(-2)^5 \times (-2)^2 \div [(-2)^8 \div (-2)^5] + (-2)^3$$

= $(-2)^5 \div (-2)^2 \div [(-2)^8 \div (-2)^5] + (-2)^3$
= $(-2)^5 \div (-2)^2 \div (-2)^5 + (-2)^3$
= $(-2)^5 \times (-2)^2 \div [(-2)^8 \div (-2)^5] + (-2)^3$
= $(-2)^5 \times (-2)^2 \div [(-2)^8 \div (-2)^5] + (-2)^3$
= $(-2)^5 \times (-2)^2 \div [(-2)^8 \div (-2)^5] + (-2)^3$
= $(-2)^5 \times (-2)^2 \div [(-2)^8 \div (-2)^5] + (-2)^3$
= $(-2)^5 \times (-2)^2 \div [(-2)^8 \div (-2)^5] + (-2)^3$
= $(-2)^5 \times (-2)^2 \div [(-2)^8 \div (-2)^5] + (-2)^3$
= $(-2)^5 \times (-2)^2 \div [(-2)^8 \div (-2)^5] + (-2)^3$
= $(-2)^5 \times (-2)^2 \div (-2)^3 + (-2)^5$
= $(-2)^5 \times (-2)^2 \div (-2)^3 + (-2)^5$
= $(-2)^5 \times (-2)^2 \div (-2)^3 + (-2)^3$
= $(-2)^5 \times (-2)^2 \div (-2)^3 + (-2)^3$
= $(-2)^5 \times (-2)^2 \times (-2)^3 + (-2)^3$
= $(-2)^5 \times (-2)^5 \times (-2)^3 + (-2)^3$
= $(-2)^5 \times (-2)^5 \times (-2)^5 \times (-2)^5$
= $(-2)^5 \times (-2)^5 \times (-2)^5 \times (-2)^5$
= $(-2)^5 \times (-2)^5 \times (-2)^5 \times (-2)^5$
= $(-2)^5 \times (-2)^5 \times (-2)^5 \times (-2)^5$