Math 9

2.4 - Exponent Laws I

Name: \qquad
Date: \qquad

Exponent Laws are rules that we use when we are combining and simplifying powers.

Investigate

Product	Each Power Expanded	Re-write as a Single Power
$3^{3} \times 3^{4}$		
$5^{4} \times 5^{2}$		
$(-2)^{3} \times(-2)^{2}$		
$10^{3} \times 10^{0}$		

Conclusion: When we MULTIPLY powers that have the same \qquad we keep the
\qquad and \qquad the powers.

$$
\Rightarrow \quad b^{x} \times b^{y}=
$$

Example 1: Write each expression as a single power:
a) $4^{5} \times 4^{7}$
b) $3^{9} \times 3$
c) $(-13)^{12} \times(-13)^{11}$

Example 2: Evaluate:
a) $5^{2} \times 5^{6}$
b) $(-3)^{4} \times(-3)^{2}$
c) $(-2)^{5} \times(-2)^{4}$

Investigate

Quotient	Each Power Expanded	Re-write as a Single Power
$3^{5} \div 3^{4}=\frac{3^{5}}{3^{4}}$		
$5^{7} \div 5^{4}=\frac{5^{7}}{5^{4}}$		
$(-2)^{6} \div(-2)^{3}=\frac{(-2)^{6}}{(-2)^{3}}$		
$10^{3} \div 10^{0}=\frac{10^{3}}{10^{0}}$		

Conclusion: When we DIVIDE powers that have the same \qquad we keep the
\qquad and \qquad the powers.

$$
\Rightarrow \quad b^{x} \div b^{y}=\frac{b^{x}}{b^{y}}=
$$

Example 3: Write each expression as a single power, then evaluate:
a) $8^{7} \div 8^{3}$
b) $3^{12} \div 3^{8}$
c) $(-5)^{10} \div(-5)^{6}$

Example 4: Evaluate using exponent laws and correct order of operations:
a) $3^{3}+3^{2} \times 3^{4}$
b) $(-2)^{5} \times(-2)^{2} \div\left[(-2)^{8} \div(-2)^{5}\right]+(-2)^{3}$

