Recognize the pattern to complete the following tables:

Power	Value
25	
2^4	
2^3	
2^2	
21	
2°	
2^{-1}	
2^{-2}	

Power	Value
5 ⁵	
5 ⁴	
5 ³	
5 ²	
5 ¹	
5 ⁰	
5^{-1}	
5 ⁻²	

Power	Value
10 ⁵	
10^4	
10^3	
10^2	
10¹	
10^{0}	
10 ⁻¹	
10^{-2}	

Power	Value
$(-2)^5$	
$(-2)^4$	
$(-2)^{3}$	
$(-2)^2$	
$(-2)^{1}$	
$(-2)^{0}$	
$(-2)^{-1}$	
$(-2)^{-2}$	

Based on the patterns you observed above, any BASE to the power of ZERO has a value of _____.

Evaluate: a) $15^0 =$

b)
$$(-250)^0 =$$

b)
$$(-250)^0 =$$
 c) $(the \ neighbour's \ cat)^0 =$

d)
$$-4^0 =$$

e)
$$-100^{\circ} =$$

Based on the patterns observed in the tables above, any BASE to the power of a NEGATIVE INTEGER, e.g. $(BASE)^{-n}$ can be written as:

Evaluate: a) $7^{-2} =$

b)
$$(-10)^{-3} =$$

c)
$$-10^{-3} =$$

d)
$$\left(\frac{1}{5}\right)^{-2} =$$

e)
$$-\left(\frac{1}{6}\right)^{-2} =$$

f)
$$\frac{1}{4^{-2}}$$
 =